Данный зондовый метод позволяет получить изображения поверхности образцов (в том числе и непроводящих) с использованием как кантилеверов, так и Qplus сенсоров. В последнем режиме одновременно с АСМ-изображениями с атомарным разрешением могут быть получены и СТМ-изображения.
Времяпролётная масс-спектрометрия является методом масс-спектрометрии, в котором соотношение массы иона и заряда определяется с помощью измерения времени. Использование рефлектрона приводит к значительному увеличению разрешения времяпролётных приборов по сравнению с линейными спектрометрами и увеличивает точность определения масс. Выбор ионизационного источника зависит от состояния, в котором находится вещество перед ионизацией. Ионизация возможна электронным ударом или лазерными квантами (фотоионизация).
Метод дифракции медленных электронов позволяет получить информацию о монокристаллической структуре поверхности образца.
В основе Оже-электронной спектроскопии (ОЭС) лежит измерение энергии и количества Оже-электронов, вылетающих с поверхности твердого тела при ее бомбардировке пучком электронов. Важной особенностью Оже-электронной спектроскопии является ее чувствительность к химическому состоянию анализируемых элементов на поверхности. Химическое состояние элементов образца отражается на форме и положении особенностей спектра Оже-электронов.
Оптическая спектроскопия (в диапазоне длин волн от вакуумного ультрафиолета до инфракрасной области)
Позволяет исследовать спектры излучения в диапазоне длин волн от вакуумного ультрафиолета до инфракрасной области. Источник низкоэнергетичных электронов используется для возбуждения спектров люминесценции в газовой фазе, источник высокоэнергетичных электронов – для возбуждения спектров люминесценции нанокомплексов на поверхности твердого тела.
Метод фотоэлектронной спектроскопии является современным методом исследования заполненных электронных состояний в твёрдом теле. Он основан на явлении фотоэффекта: электрон в заполненном состоянии оптически возбуждается фотоном в незаполненное состояние. Рентгеновская фотоэлектронная спектроскопия остовных уровней позволяет получить количественную информацию об элементном и химическом составе приповерхностной области образцов. Для изучения элементного химического состава образцов с латеральным разрешением используется метод элементного картирования поверхности, реализация данного метода возможна за счёт наличия специальной микроканальной пластины, которая позволяет анализировать вылетающие из твёрдого тела фотоэлектроны с пространственным разрешением.
Данные методы позволяют получить изображение поверхности образца с атомарным разрешением, энергетический спектр заполненных и свободных состояний, распределение работы выхода и локальной плотности состояний с высоким латеральным разрешением.
Метод позволяет получить изображение поверхности образца путем сканирования сфокусированным электронным пучком (до 95 нм и 10 кэВ) с одновременной регистрацией возбужденного этим пучком низкоэнергетических вторичных электронов.
Спектроскопия ионного рассеяния представляет собой метод, в котором пучок первичных ионов рассеивается на поверхности. Кинетическая энергия рассеянных ионов может быть измерена. Энергетические потери упруго рассеянных ионов зависят от относительных масс атомов на поверхности и ионов, таким образом, измеренный спектр содержит информацию об элементном составе поверхности.
Спектроскопия характеристических потерь энергии электронами — разновидность электронной спектроскопии, в которой исследуемая поверхность подвергается облучению электронами с узким диапазоном энергий, и регистрируются потери энергии неупруго рассеянных электронов. Распределение электронов по энергиям несет информацию о потерях энергии на возбуждение колебательных состояний, плазмонов, глубоких уровней и межзонных переходов.